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Abstract:-  Pierre de Fermat in 17th century wrote as a marginal note (later published by 

his son Samuel de Fermat) on the Diophantus’ book Arithmetica ( Latin translation with  

commentary of the Greek book by Claude Gaspard de Bachet), while studying the natural 

number solutions of equation x2 + y2 =z2, that, “ No cubes of natural numbers can be split 

in to two cubes or a biquadrate can be split into two biquadrates or no other higher order 

greater than 2 of a natural number can be split in to the sum of two natural numbers having 

the same order, in which I have found a marvellous demonstration that this margin is 

narrow to contain.” Ironically, Fermat didn’t give the proof for this proposition during his 

life time. It was the last one to be proved of Fermat’s propositions and hence historically 

called as Fermat’s Last Theorem. In modern terms the theorem can be stated as “xn +yn =zn 

has no solutions for n >2 in natural numbers.” Mathematicians tried for centuries but could 

not construct the proof for general case. In 1994 Prof. Andrew Wiles (with the help of 

Richard Taylor) published a proof using the advanced ideas and techniques of mathematics 

and is significantly long and deep. But the attempt here is to understand the fundamental 

relationships of natural number system, the linear and trilinear (triangle inequality) 

relationships in which the number system manifests its significance in physical world since 

the time of early civilizations. Fermat’s Last Theorem is here by demonstrated as a 

statement about the uniqueness of the trilinear relationship in natural number system by 

establishing the unique and comprehensive correlation between Euclidean geometry and 

natural number system (geometric algebra of natural number system). Both of them in 

conjunction demonstrates the principle of true model of relational dominance of trilinear 

relationships in natural number system, in which the triangle law of addition of physical 

quantities and the trigonometry of the space fundamentally depends upon.   
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 Natural Number System and Its Fundamental Relationships. 

1. Natural numbers. 

         Natural numbers are represented as N=1,2,3,4,5…… As we all know that natural 

numbers are counting numbers and they are fundamentally used to count objects in nature. 

2. Natural numbers can be represented on a Euclidean line in order with some scale unit 

for 1. 

    

     Or – Origin  

        As we represent the counting numbers or natural numbers on a Euclidean line in order 

with some scale unit for 1, the property of the natural numbers dramatically changes. Now 

the line with numbers represented on it (the number line) looks like a marked straight edge 

and the combination of numbers and the line or part of line becomes suitable as a system 

for making lengthwise (geometric) measurements. 

       Also, another important fact is that the natural numbers now form the part of the line, 

and the numbers can be represented as line segments of corresponding length (or a 

number corresponds to the specified magnitude of line segment with which the number is 

represented on a number line in relative to a scale unit for 1) and are bound to obey the 

relationships that can be developed for the line or part of the line (line segments) in a 

logical manner. 

       Therefore, the statement, “Natural numbers can be represented on a Euclidean line in 

order with some scale unit for 1,” may be treated as an axiom and be called as the “linearity 

axiom” of natural numbers. 

3. Linear relationship between three numbers is a fundamental relationship in natural 

number system. 

         Linear relationships between three natural numbers can be expressed as follows. 

     1)   x + y = z 

                                  2)   x – y = z (x > y) 

     3)   x × y = z 

                                  4)   x ÷ y = z (y is a factor of x) 
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        The second, third and fourth relations as shown above are the manifestation of the 

fundamental linear relationship x + y = z. They are called linear relationships or linear 

operations because all the above operations can be demonstrated as linear transformations 

on a number line. In the first case of addition of two numbers, the line segments 

representing the corresponding numbers to be added are combined together to get the line 

segment representing the resultant number. And the second case, to subtract a number 

from another, the line segment representing the former is deducted from that representing 

the latter and the remaining line segment represents the resultant number. The third case 

of multiplication of two numbers can be demonstrated as the recurrent addition of the line 

segment representing either of the two numbers, and the remaining number represents the 

number of recurrences its counterpart has to involve in the operation of addition to give 

the line segment representing the resultant number. The fourth case of division of two 

numbers can be demonstrated as the recurrent elimination of the line segment 

representing the dividend by the line segment representing the divisor and the number of 

recurrences needed for the total elimination of the dividend is the resultant number. 

4. Trilinear relationship – another fundamental relationship in natural number system. 

4.1. The trilinear relationship between three natural numbers. 

          Trilinear relationship is also a fundamental relationship between three natural 

numbers which is well known as the triangle inequality relationship in geometry. The term 

trilinear is used intentionally to specify that the relationship is fundamental in natural 

number system and in natural number system there is no notion of angles. 

         If three natural numbers x, y and z hold the following relationship between them, then 

a trilinear inequality relationship is said to exist between them.  

  x < z + y 

  y < z + x          Each number of the triple is less than sum of the other two. 

  z < x + y 

  4.2. Lemma 1. 

          The complete expression of trilinear relationship for three natural numbers can be 

stated that, for z ≥ y ≥ x, if z < x + y, there exists a trilinear relationship between them. 

Proof 

         The logically possible relation between any three natural numbers is one of the 

following. 
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1)  Three numbers are same. 

  z = y = x 

2) Two numbers same and greater than the third. 

  z = y > x 

3)   One number greater than the other two equal numbers. 

  z > y = x 

4) All the numbers different. 

  z > y > x 

             Here z may be taken as the large number in all the four relations. The large number 

reference does not indicate that there is a specific large number, but only to the number 

which can be considered as large in the triple. For the numbers x, y, z, if all are equal, then 

the large number is the number itself. It can be easily seen if the large number is less than 

the sum of the other two numbers, other two of the trilinear inequality naturally follow. 

             We can see that in the first two cases, z = y = x and z = y > x, the large number z is 

always less than the sum of the other two numbers and there always exists a trilinear 

relationship between them. In the other two cases i.e. z > y = x and z > y > x, a trilinear 

relationship exists between three numbers if and only if, the large number is less than the 

sum of the other two numbers. 

             Therefore, the complete expression of trilinear relationship in natural number 

system can be stated as, for three natural numbers z ≥ y ≥ x, if z < x + y, there exists a 

trilinear relationship between them. 

4.3. Lemma 2. 

       The number of trilinears of the form z < x + y exists for a natural number y with x such 

that y ≥ x and z the large number is y(y + 1)/2 and the set of triples for each y is unique. 

                    Proof 

                      The triples formed for y with the given condition z ≥ y ≥ x, z < x + y are as follows. 

                   Case (1), (z = y = x),  ∴ y = y = y, y < y + y , there exists 1 trilinear triple. 

   Case (2), (z = y > x), ∴ y = y > x, y < y + x,  x can be 1,2,...,y-1, ∴ y-1 trilinear triples. 

Case (3), (z > y = x), In this case x = y, but z < x + y, ∴ z can take a minimum value of                   

y+1 and maximum value of 2y-1, (2y-1< y + y). 

∴ number of trilinear triples =  (2y-1) - (y+1) +1=y-1. 

Case (4), (z > y > x), in this case x can be 1,2,.......,y-1,but z < x + y,∴ for x=1,  

there will not be any trilinear as there would not be any z < y+1, between y and y+1. 
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Similarly, for x=2, there would be 1 trilinear and so on. ∴ for x = y-1, there would be  

y-2 trilinear triples. 

  ∴ total number of triples for case (4) = 1+2+3+...........+y-2= (y-2)(y-1)/2= 

(y2 -3y +2)/2.  

The total of all the triples for the four cases = (1+ y-1 +y-1 +(y2 -3y +2)/2) = 

(y2+ y)/2= y(y+1)/2. 

            To show the trilinear triples are unique for each y. 

          Let the triples are formed for the 4 cases as shown above for the natural numbers y1 

and y such that y1> y. For case (1), the triple consists of only y1 and y in each case and in 

the next two cases, each of them contains two y1 or y accordingly. Let the triples for y by 

case (4) are of the form z > y > x., and for y1 as z1 > y1 > x1 (z, x and z1, x1 take suitable 

values in respective cases). Therefore it can be seen that any of the triples formed by cases 

(1) and (4) of y1 and y respectively cannot be identical with any of them of cases (1) to (3) 

of y and y1 respectively. Comparing cases (2) and (3) of y1 and y together, as each of them 

contains two y1 or y accordingly, whatever be the third one in both of them, they cannot be 

identical. As the triples for y by case (4) are of the form z > y > x and for y1 as z1 > y1 > x1 

and since. y1 > y, y can take only the position of x1 in the triple formed by y1. Now, if any of 

the triples formed by y and y1 by case (4) has to be same, then either z1 or y1 has to take one 

of the x values of the triples formed by y. This is not possible as y > x and z1, y1> y. 

Therefore, none of the triples formed by y and y1 for case (4) is identical. Hence the set of 

triples formed for each y is unique.  

              Let us demonstrate the above lemma with an example. 

                Consider the case y=4, then x=1, 2, 3, 4. 

  The trilinear relations for y=4 are shown below. 

                                      Case (1), (z = y = x), i.e. the trilinear is 4, 4, 4. 

  Case (2), (z = y > x), x=1, 2, 3. y – 1 = 4 – 1=3 triples. 

  The trilinear triples are (1) 4, 4, 1(2) 4, 4, 2 (3) 4, 4, 3. 

               Case (3), (z > y = x), x = 4.y – 1 = 4 – 1=3 triples. 

                The trilinear triples are (1) 7,4,4 (2) 6, 4, 4 (3) 5, 4, 4. 

                        Case (4), (z > y > x), x=1,2,3. 

                        There will be no triple possible with x=1. 

                        The triples are (1) 5, 4,2 (2) 5,4,3 (3) 6,4,3. 
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              i.e.  (y2 -3y +2)/2 = (42 -3 x 4 +2)/2 = 3. 

              The total number of triples, 4 cases, is 3+3+3+1=10. 

               y(y+1)/2 = 4(4+1)/2 = 10.  

    In fact, for each y, we get a unique set of triples as per the lemma above and therefore 

there exists infinite number of trilinear triples in natural number system and they are 

countable also. 

5. The natural numbers x, y and z holding the relationship x2 + y2 = z2 represents a class of 

trilinears in natural number system.  

5.1. The relationship x2 + y2 = z2 in the natural number system. 

 The relationship x2 + y2 = z2, in which there are large number of natural number 

triples holding the relation was known to be understood by human civilisation before 

1600BC. The solution to the equation was given in 3rd century AD by Diophantus of 

Alexandria, in Book II of his Arithmetica, and a more geometric version can be found in 

Book X of Euclid’s Elements. The solution for x2 + y2 = z2 is given as x =u2 – v2, y = 2uv and 

z = u2 + v2, where u and v are any two natural numbers such that u > v. The relationship 

(u2 – v2)2 + (2uv)2 = (u2 + v2)2 always holds true and it is an identity in the system of 

natural numbers. 

            As any pair of natural numbers of the form u > v can satisfy x2 + y2 = z2, if x is 

arranged as u2- v2, y as 2uv and z as u2 + v2, shows the relationship is well spread 

throughout the natural number system. In fact, all the solutions to x2 + y2 = z2 can be given 

as x = m(u2 – v2), y = 2muv and z = m(u2 + v2) (x, y possibly transposed, u > v, u,v coprime 

and of opposite parity) and m, any natural number, is a proven fact. 

5.2. Lemma 3. 

          The relationship x2 + y2 = z2 represents an equality relationship of a class of triples 

holding trilinear inequality in natural number system. 

Proof. 

          The numbers holding the relation x2 + y2 = z2 forms a distinct class in natural number 

system is described in 5.1. 

            Let x2 + y2 = z2, then z2 > y2, z2 > x2, ∴ z > y, z > x, x may or may not be equal to y 

does not affect the proof, but Fermat had proved that there are no isosceles triples for this 

case and the solution will be of the form z > y > x. Now x2 + y2 < (x + y)2, as (x + y)2 

contains an additive term other than x2 + y2 => z2 < (x + y)2 => z < (x + y). 
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     Since z < x + y and z > y > x, the other two inequalities x < z + y and y < z + x naturally  

follow and there exists a trilinear inequality in between them. .  

       The solution to the equation x2 + y2 = z2, given as, x= u2 – v2, y = 2uv and z=u2 + v2, 

fundamentally develops as an inequality from u > v as u2 – v2 + 2uv > u2 + v2, (z < x + y) 

and if z > y,x , they also hold a trilinear inequality relationship, is demonstrated as follows. 

  u > v => 2uv > 2v2 => 2uv - v2 > v2, adding u2 on both sides => u2 – v2 + 2uv > u2 + v2 

=> z < x + y. In this u2 – v2 < u2 + v2 and to show 2uv < u2 + v2, put u = v + p, p a natural 

number. 2uv => 2 (v+ p) v = 2v2 + 2vp.  u2 + v2 => (v + p)2 + v2 = 2v2 + 2vp + p2. 

   ∴ 2uv < u2 + v2 for all p and u2 + v2 > u2 – v2, 2uv, (z > y, x) and as z < x + y, the other 

two inequalities naturally follow and there exists a trilinear inequality in between them. 

            [The relationship x2 + y2 = z2 represents a class of trilinear relationship and 

therefore a unique one in natural number system and may be considered as equivalent to 

the fundamental linear relationship x + y = z. It is important here to note that the equality 

x2 + y2 = z2 is not obtained from the inequality relationship between them but we are only 

showing the otherwise that x2 + y2 = z2 is holding a trilinear inequality relationship.] 

6. The equality relationship of all the trilinears in natural number system. 

            As we can see that the relationship x2 + y2 = z2 and its solution as x = u2 – v2, y = 2uv 

and z = u2 + v2, represents a class of trilinears in the natural number system. It can be seen 

that there exists lot more trilinear triples not holding the relationship x2 + y2 = z2 in natural 

system by lemma1. The number of triples holding a trilinear relation as per case (4) 

lemma1 for a natural number y is (y2 -3y +2)/2 in which a relation of the form x2 + y2 = z2 

exists (as isosceles triples do not form this relation). And in many cases of y, there are no 

triples holding the relation x2 + y2 = z2. As an example, for y=5, the number of trilinear 

triples exist as per case (4) lemma1 is 6 and none of these is of the form x2 + y2 = z2. Hence 

there are infinite number of trilinear triples which cannot be expressed as x2 + y2= z2. As 

in the case of 10, 11, 12 where x = 10, y = 11, z = 12, z2 is less than x2 + y2, and for 10, 11, 

15 where x = 10, y = 11, z = 15, z2 is greater than x2 + y2. All the trilinear triples formed by 

the relation z ≥ y ≥ x and z < x + y, excluding those satisfying x2 + y2=z2, may be tentatively 

included in either of the following class x2 + y2 < z2 or x2 + y2 > z2. 

..    It is not at all surprising that as per the linearity axiom natural numbers can be 

represented as line segments, the inequality to equality transformation of all the trilinears 

is not established by algebra, as the general theory of straight-line segments holding 

triangle inequality relationship is Euclidean geometry. 
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7. The Euclidean geometry and natural number system. 

7.1. Outline of Euclidean geometry. 

        Euclid has given his geometry in the book Elements which comprises of thirteen books 

(includes number theory and geometry of solids) and the Book1 deals with plane geometry. 

Euclidean geometry is built up of definitions of general terms occurring in geometry such 

as points, lines, surfaces, plane angles, circles, triangles (trilateral figures) etc. and the five 

postulates and the common notions which are logical statements in mathematics such as 

“Things equal to the same thing are also equal to one another.” 

The five postulates. 

            It is postulated  

                     1) To draw a straight line from any point to any point. 

              2)  And to produce a finite straight line continuously in a straight line. 

                     3)  And to draw a circle with any centre and radius. 

              4)  And all right angles are equal to one another. 

                          5)  And if a straight line falling across two straight lines make internal angles less 

than two right angles, then the two straight lines, on the same side on which the 

internal angles are subtended, produced sufficiently will meet together. 

                         The last axiom was a point of contention for mathematicians for centuries as they tried 

to derive it as a result from the other four axioms and failed, which eventually led to new 

developments in geometry. A statement considered as equivalent for the fifth postulate 

by the Scottish mathematician John Playfair is, “Given a line and a point outside the line, 

all the lines drawn through the point meet the given line except one parallel to it.” The last 

postulate was eventually called as the parallel postulate of Euclidean geometry. 

         It is to be noted that a triangle can be constructed using unmarked ruler and compass 

with all the first three postulates and the Book1 Elements begins with the proposition to 

construct an equilateral triangle. As the fourth one gives the sense of orthogonality, the 

sum of three angles of a triangle is 180º (proposition 32, Book1, Elements), the 

Pythagorean theorem of right triangles and the similar triangles holding equality in ratio 

of corresponding sides can only be proved with the help of 5th postulate. 

            [Even though Playfair’s statement is considered equivalent to Euclid’s 5th postulate, 

the intuitions created by two statements are little bit different. In Playfair’s statement, if  
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the given line and the point are far apart and even if a non-parallel line or to say an 

apparent parallel to the given line passes through the given point, we may not get a better 

perception whether the lines will meet together after a sufficient extension of the both. 

But Euclid’s 5th postulate makes no distinction between, if the two straight lines in which 

the third line crosses over lay near to each other or far apart. This means if two straight 

lines L1 and L2 are sufficiently near to each other and even each of the internal angles 

subtended by the third line L3 on the same side of L3 crossing over L1 and L2 is near to a 

right angle or one of them a right angle or a little more and that sum of both is less than 

two right angles, we may get an intuition that L1 and L2 on the same side of the subtended 

angles sufficiently produced will meet together. And this further makes us intuit that if a 

straight line L4 is set far apart L1 such that internal angle subtended by L3 with L4 is same 

and on the same side of the former case considered as that subtended by L3 with L2, then 

the two straight lines L1 and L4 on the same side of the subtended internal angles 

sufficiently extended will also meet together. This implied characteristic of the 5th 

postulate is the basis of existence of similar triangles (triangles having similar shapes with 

included angles same, but the corresponding sides scaled in equal ratio) in Euclidean 

geometry. However, the 5th postulate of Euclid gives an intuition about parallel lines, the 

statement may also be referred as parallel postulate.]  

7.2. Euclid’s propositions 20,22 of Book 1 Elements. 

          [The facts regarding Euclid’s propositions throughout this paper are taken from the 

book of Euclid’s Elements of Geometry, the Greek text written by J.L. Heiberg and 

translated into English by Richard Fitzpatrick. To the English author, the text in 

parenthesis of the propositions is material, which is implied but not actually present in 

Greek text.] 

           Euclid in his book Elements (Book 1) has stated in its proposition 20 that, “In any  

triangle, (the sum of) two sides taken together in any (possible way) is greater than the 

remaining (side).” Also, in proposition 22 of the same book it is stated that, “To construct a 

triangle from three straight lines which are equal to three given (straight lines). It is 

necessary for (the sum of) two (of the straight lines) taken together in any (possible way) 

to be greater than the remaining (one), (on account of the fact said in proposition 20).” 

          He has given proof for both the statements in the said book, as the book Elements itself 

is a remarkable achievement of mankind. 



11 

 

          But if we analyse both the statements, the proposition 22 is framed in accordance with 

the facts established in proposition 20, which means that the proposition 20 is a necessary 

condition to form a triangle and if that condition is met there always exists a triangle by 

proposition 22. This means that to construct a triangle, “For the sum of two of the straight 

lines taken together in any possible way to be greater than the remaining one,” is not only 

a necessary condition but also a sufficient condition, and the method of construction given 

by Euclid (for demonstrating proposition 22) itself proves that the condition is sufficient. 

       The construction by Euclid for demonstrating proposition 22 is explained below to 

show that, “For the sum of two of the straight lines taken together in any possible way to 

be greater than the remaining one,” is also a sufficient condition to constitute a triangle. 

                                  

            Let the given line segments be AB, CD and EF, such that AB < CD+ EF, CD < AB + EF 

and EF < AB + CD. Set out AB, CD and EF on the line segment AK as shown in the figure. 

Construct the first circle with B as centre and AB as radius. The condition AB < CD+ EF is 

sufficient to ensure that the circle intersects the line segment BK somewhere only in 

between B and F, say at H (let H be in between B and E). Now construct the second circle 

with E as centre and EF as radius. Likewise, as the first circle, the condition EF < AB + CD 

ensures that the second circle would intersect line segment AE somewhere only in between 

A and E. But the condition CD < AB + EF is sufficient to ensure that the constructed circle 

will intersect line segment AE only somewhere in between A and H, say at G (otherwise, if 

it intersects at the point H means that CD = AB + EF or on a point in between H and E means 

that CD > AB + EF).  If H happens to be at E or in between E and F, then G will be in between  
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A and E. The second circle thus constructed has its diameter GF with the point G always 

laying inside the first circle on its diameter and the point F always laying outside the first 

circle on the same line segment of the diameter of the first circle extended (HK), imposes 

the trajectory of the second circle to intersect the first circle at points P and Q (above and 

below the line segment AK respectively) as shown in the figure. Joining P or Q with the 

centres of the circles at B and E gives the required triangle (BPE or BQE) with its sides as 

AB, CD and EF. It can be seen that the construction is independent of the order in which the 

line segments are set out initially and whether it is carried out from left to right or vice 

versa. Hence to construct the triangle, the given condition, two of the straight lines taken 

together in any possible way to be greater than the remaining one is sufficient. 

          [Accordingly, the construction is valid for all three-line segments z ≥ y ≥ x (as it 

represents all possible logical relationships in between them) and if z < x + y.] 

         [Now, a new model, the triangle is formed from three line segments holding triangle 

inequality relationship between them, which has additional three parameters, the included 

angles between its sides.] 

 7.3. Lemma 4. 

          All the trilinears in natural number system formed by the relation z ≥ y ≥ x, z < x + y 

are represented as triangles in Euclidean geometry. 

Proof.   

           The necessary and sufficient condition to form a triangle is given by propositions 

20,22 of Book 1 Elements, that is the triangle inequality relationship between three-line 

segments. The construction of a triangle can be carried out with the unmarked ruler and 

compass with all the first three postulates with the given three-line segments satisfying the 

triangle inequality relationship. 

           By the linearity axiom, natural numbers can be represented as straight line segments 

with some scale unit for 1. The line segments constituting the trilinears are of specified 

magnitudes representing their corresponding numbers. But the logical relationship 

between these given three-line segments (z ≥ y ≥ x, z < x + y) to form a triangle is prime 

significant, and is same as the necessary and sufficient condition to construct a triangle, a 

triangle can always be constructed with the three-line segments. Therefore, all the 

trilinears in natural number system are represented as triangles in Euclidean geometry. 
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7.4. The Pythagorean theorem. 

        The Pythagorean theorem states that in a right-angled triangle, if z is the hypotenuse, 

x,y the other two sides then z2 = x2 + y2. The proof (as believed due to Pythagoras) can be 

by simple reasoning (but with an intuition about space) as shown below. 

                                    

          On the left side we have square S with sides of length x + y containing four copies of 

the right-angled triangle, one in each corner, the region of S not covered by a triangle is 

another square of area z2. On the right, the four triangles have been moved around within 

S to form two rectangles, the uncovered region S now consists of two squares of areas x2 

and y2. Since moving the triangle leaves their areas unchanged, the two uncovered regions 

have equal areas so that x2 + y2 = z2.  

            The theorem is proved with the help of the fifth postulate of Euclidean geometry 

(which is an axiomatic system) in proposition 47, Book 1, Elements and the theorem 

representing the right triangle is unique in the sense that Euclidean geometry is a 

consistent geometry and cannot get contradictory results from its postulates. The converse 

of Pythagorean theorem, “If the square on one of the sides of a triangle is equal to the sum 

of squares on the remaining sides, then the angle included in the remaining sides is a right 

angle,” is stated and proved in proposition 48, Book 1, Elements. 

7.5. Lemma 5. 

          The trilinear inequalities holding the relation x2 + y2 = z2 representing the well 

identified trilinear class in natural number system constitute right angled triangles in 

Euclidean geometry, and the Pythagorean theorem of right triangles demonstrates their 

unique trilinear inequality to equality transformation. 

  Proof. 

           It is demonstrated in lemma 4 that all the trilinears in natural number system are 

represented as triangles in Euclidean geometry and include that of the well identified class 

   s        s 
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of trilinears represented by the relation x2 + y2 = z2. By proposition 48, Book 1, Elements, 

the triangle holding the relation x2 + y2 = z2 should be a right triangle.  

                                                          

           The constituted triangle represents itself the trilinear inequality between its sides 

and by Pythagorean theorem, relation between the sides of a right triangle is x2+y2 = z2, 

and there by demonstrates their unique trilinear inequality to equality transformation. 

          [The above lemma establishes a comprehensive and unique correlation between 

natural number system and Euclidean geometry as the lemma is demonstrated with the 

Pythagorean theorem which is the fundamental theorem establishing the relation between 

sides of a triangle in Euclidean geometry and is unique. By the algebra of natural numbers, 

it is shown that the relationship x2 + y2 = z2 represents a trilinear inequality in between 

them. Now the geometry demonstrates how this trilinear inequality looks like and why this 

relationship transforms in to an equality. Understanding the beauty of such relationships 

in nature is a marvel to human mind.] 

7.6. The cosine law – the general law of triangles in Euclidean geometry. 

                                      

 As by the propositions 20 and 22 of Book I of Elements, there exists a triangle for 

any three-line segments satisfying the triangle inequality relationships. The triangles are 

classified according to the large angle, θ (large angle means, angle which can be considered 

as large of the three angles, i.e., if all the angles are same then the angle itself is the large 

angle), as obtuse angled triangle (90º < θ < 180º), right angled triangle (θ = 90º), acute 
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angled triangle (60º ≤ θ < 90º). The cosine law generalises Pythagorean theorem for 

general triangles in Euclidean geometry. It represents the relationship of a side of triangle 

with the other two sides and the cosine of included angle between them. The equality 

relationship of side z with the other two sides of the triangle, x, y and the cosine of included 

angle (cosθ1) between them, is z2 = x2 + y2 – 2xycos θ1. The relationship for each of the 

other two sides of the triangle with the remaining sides can also be established in the same 

form as y2 = z2 + x2 – 2xz cos θ2 and x2 = z2 + y2 – 2zy cosθ3 where θ2 is the included angle 

between sides z and x and θ3, between z and y of the triangle. 

        In the case of obtuse angled triangle, where large angle θ (let θ1= θ in triangle XYZ) is 

between 90º and180º, cosθ is negative and the – 2xycosθ term becomes additive. 

Therefore, in this case, it can be shown that the relationship of the larger side z (opposite 

to θ) with the other two sides is x2 + y2 < z2, and in the case of right triangle, cosθ = 0 and 

the relationship of larger side z with other two sides is x2 + y2 = z2. And for acute angled 

triangle, large angle θ is such that 60º ≤ θ < 90º and cosθ takes only positive values and 

therefore the relationship of the larger side z with the other two sides of the triangle will 

be of the form x2 + y2 > z2. The cosine law relationships of the other two sides of the triangle 

(other than the larger side), with their corresponding sides in each of the three cases 

(obtuse angled, right angled and acute angled) have no special significance, as the angle 

opposite to them will always be less than 90º and cosθ will always be positive and the 

normal representation of cosine law will be prevalent. Therefore, a more general statement 

of cosine law of triangles will be z2 = x2 + y2 – 2xycosθ where z is the larger side and θ the 

included angle between x and y because this relation defines the triangle completely and 

one could understand it as an obtuse angled, right angled or acute angled triangle. As the 

large angle θ =180º, cosθ = -1, the cosine law expression becomes z2 = x2 + y2 + 2xy, in 

turn reduces to x + y = z, linear. 

         [The relation between sides of an obtuse angled triangle is given in proposition 12 and 

that of acute angled triangle is given in proposition 13 of Book 2 Elements, as statements 

demonstrated geometrically using Pythagorean theorem. Cosine law represents the 

Pythagorean theorem and both the above said relations and is a conclusive generalisation 

of the relation between sides of a triangle in Euclidean geometry which explicitly 

demonstrates that a side of a triangle related to the other two sides is also dependent on 

the included angle between them.]  
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7.7. Lemma 6. 

          All the trilinears in the natural number system which are represented as triangles in 

Euclidean geometry can be uniquely and invariantly expressed as z2 = x2 + y2 - 2xycosθ 

where z is the large number and θ is the included angle between x and y and they are 

classified in to three classes according to the relations x2 + y2=z2, x2 + y2 < z2, x2 + y2 > z2. 

Proof. 

           According to lemma 4, all the trilinears in natural number system are represented as 

triangles in Euclidean geometry.    

           All triangles in Euclidean geometry are the result of the same postulates and the 

Pythagorean theorem establishing the relation between three sides of a right triangle is the 

fundamental theorem of triangles in Euclidean geometry and is unique in this regard. The              

general law of triangles, the cosine law, is the generalisation of Pythagorean theorem.  

           The trilinears holding the relation x2 + y2 = z2 in natural number system constitute 

right triangles in Euclidean geometry. The transformation of trilinear inequality to equality 

relation of this well identified class by Pythagorean theorem is shown in lemma 5. 

          As all the trilinears in natural number system are represented as triangles in 

Euclidean geometry, cosine law, the general law of triangles is applicable to all of them. 

Hence all the trilinears in natural number systems can be uniquely and invariantly 

transformed to the equality by cosine law as x2 + y2 – 2xycosθ = z2, where z is the larger 

number and θ is the included angle between x and y.   

           The trilinears in the natural numbers system, other than in the class of x2 + y2 = z2 

can be tentatively included in the class of x2 + y2 > z2 or in x2 + y2 < z2 where z is the large 

number. The triples forming the relationships x2 + y2 > z2., x2 + y2 < z2 can be uniquely 

represented as acute angled triangles and obtuse angled triangles respectively by cosine 

law of triangles. As z represents the larger number, the included angle between x and y in 

the case of acute angled triangles lays between 60º and 90º (inclusive of 60ºand exclusive 

of 90º) and in the case of obtuse angled triangles, the included angle between x and y lays 

between 90º and 180º (both exclusive). Cosine law validates the tentative classification of 

all the trilinears other than x2 + y2 = z2 and belongs to x2 + y2 < z2 or x2 + y2 > z2 as genuine 

trilnear classification in natural number system. Therefore, for z ≥ y ≥ x, z < x + y, there 

exists only three classes of trilinears in natural number system, x2 + y2 = z2, x2 + y2 < z2 

and x2 + y2 > z2.  
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       [It can be easily seen for triangles with natural number sides, from the cosine law 

expression z2 = x2 + y2 - 2xycosθ, the term 2xycosθ turns out to be a negative integer in an 

obtuse angled triangle and to be a positive integer in an acute angled triangle and therefore 

cosθ will always be a negative or positive rational number (fraction) accordingly. ] 

       [As lemma 2 demonstrates that the trilinear triples in natural number system are 

countable, lemma 6 demonstrates that they are classifiable also. ] 

7.8. Euclidean geometry and the scaling property of linear and trilinear relationships in  

natural number system.  

              It can be easily seen if the linear relationship x + y = z holds between three natural 

numbers, then the relation mx + my = mz, where m is a natural number also holds true and 

is known as the scaling property of linear relationship in natural number system. The 

scaling property of linear relationship can be easily demonstrated as, a straight line 

segment representing mx combined with another of length my representing line segment 

mx + my is same as arranging each of the x of line segment mx with each of the y of line 

segment my to form x + y and all of them combined together to form m(x + y) as a single 

line segment which is equal to mz, showing mx + my = mz. 

            The scaling property is true for trilinear relationships also as z ≥ y ≥ x, if z < x +y then 

it follows mz ≥ my ≥ mx and mz < mx + my, and a trilinear inequality relationship exists 

between mx, my and mz.   The scaling property of trilinear relationships is demonstrated 

by similar triangles (triangles having similar shapes with included angles same, but the 

corresponding sides scaled in equal ratio) in Euclidean geometry. That is, if a triangle with 

sides x, y, z exists, then a scaled triangle similar to the former with sides mx, my, mz, where 

m is a natural number, also exists can be established with the 5th or parallel postulate which 

establishes a unique relationship between natural number system and Euclidean geometry.                  

      The scaling property of trilinears using similar triangles is demonstrated as below. 
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        Construct a triangle XYZ as shown above with line segments representing natural 

numbers x,y,z holding trilinear inequality. Extend the line segment XY sufficiently to R. 

Scale out AB in line segment YR such that AB = mz represented by the side c. Construct 

parallels to XZ and YZ through A and B respectively.  Let the intersection of them be C. Now 

triangle ABC is constituted. Let AC = b and BC = a. As y parallel b and x parallel a, in triangles 

ABC and XYZ, angle CAB equals angle ZXY(θ1), angle ABC equals angle XYZ(θ2) and 

therefore angle ACB equals angle XZY(θ3).   

 Now in triangle XYZ, by sine law of triangles     x     =      y     =    z 

                                                                                        sin θ1      sin θ2    sin θ3 

 i.e.  x : y : z   : :  sin θ1  :   sin θ2  :   sin θ3   

 and in triangle ABC     a     =     b    =      c             i.e.  a : b : c  : : sin θ1  :   sin θ2  :   sin θ3 

                                       sin θ1      sin θ2     sin θ3           

 ∴ a : b : c : :  x : y : z                     a   =   b    =    c           

                                                          x         y            z 

         Since c = mz, a = mx and b = my. Therefore, the scaling property of trilinears is 

demonstrated by the triangle ABC, similar to triangle XYZ representing the trilinear x,y,z, 

with  its corresponding sides scaled in equal ratio to XYZ, (mx,my,mz), is shown to exist.   

     [Unlike the cosine law, for a triangle with sides as natural numbers and θ is one of the 

included angle between its sides, can have only rational fractions for cosθ, for sine law of 

triangles, sinθ may turn out to be fractions with irrational numbers (incommensurables in 

Elements) also. The scaling property of similar triangles is demonstrated here with sine 

law of triangles is only due to simplicity. The results for similar triangles are geometrically 

demonstrated in Book 6, Elements which deals with similar figures. In proposition 4 of the 

Book, it is stated that, “In equiangular triangles the sides about the equal angles are 

proportional and those (sides) subtending equal angles correspond,” and in proposition 5, 

it is stated that, “If two triangles have proportional sides then the triangles will be 

equiangular and will have the angles which subtend corresponding sides subtend equal.”]  

8. The principle of true model of relational dominance or the genesis principle of trilinear 

relationships in natural number system. 

8.1 The principle of relational dominance. 

        For a finite collection of entities (more than two) of same characteristic with  absolute 

magnitudes, for example, length of line segments represented by l1, l2, l3…….ln and if, either 

l1= l2 + l3+ …+ ln, or l1 > l2 + l3+ …+ ln,  l1 is said to hold a dominant relation with l2, l3…….ln   

and if l1 < l2 + l3+ …+ ln, l1 is said to hold a dormant relation with l2, l3…….ln .  
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Explanation.  

          For any given l1, l2, l3, …, ln, if l1 has sufficient magnitude to hold l1= l2 + l3+ …+ ln,  then 

the relation necessarily implies that l1 > l2, l3,…, ln,, and it is implied that l1 has sufficient 

magnitude to imply its dominance over all of l2, l3,…, ln in the relation.. If l1 has more 

magnitude than to hold l1= l2 + l3+ …+ ln , then it holds the relation, l1 > l2 + l3+ …+ ln. . 

          Even though  l1 > l2, l3, …, ln, if the magnitude of l1 is not sufficient enough to hold the 

relation l1= l2 + l3+ …+ ln, then it holds the relation l1 < l2 + l3+ …+ ln  and the relation fails 

to imply l1 > l2, l3, …, ln. Moreover, the relation l1 < l2 + l3+ …+ ln always holds true if l1 is 

either less than or equal to all of l2, l3, …, ln  and also if l1 is greater than, equal to or less than 

some of them (all possible combinations in between them), means that the relation does 

not imply a  particular condition, but in general, it is implied that  l1 does not have sufficient 

magnitude to imply its dominance over l2, l3,…, ln in the relation.  

          In general, if, either l1= l2 + l3+ …+ ln, or  l1 > l2 + l3+ …+ ln, as the dominance of  l1 is 

quite evident in the relation, l1 is said to hold a dominant relation with l2, l3…….ln and since 

the relation l1 < l2 + l3+ …+ ln represents the deficiency of dominance of l1 over l2, l3,…, ln in 

the relation, l1 is said to hold a dormant relation with l2, l3…….ln.   

8.2. Lemma 7.     

         For the three cases of triangles in Euclidean geometry, the obtuse angled, the right 

angled and the acute angled triangles, there exists a symmetry of logic between the 

relationship of square of large side with the sum of squares of the other two sides 

(established by cosine law) and the relationship of the large angle of the triangle with the 

sum of the other two angles. 

Proof. 

          Let z be the large side and the other two sides be y and x (z ≥ y ≥ x, z < x +y) in each 

case (obtuse angled, right angled and acute angled triangles). Let θ1 be the large angle 

opposite to the large side and θ2, θ3 be the other two angles opposite to the corresponding 

sides y and x. The sum of the three angles of a Euclidean triangle is 180º (Proposition 32 of 

Book 1 Elements). 

Case-1 Obtuse angled triangle. 

As in this case θ1 > 90º and θ2 + θ3 < 90º (sum of angles has to be 180º). ∴θ1 > θ2 + θ3. 

The relationship of the larger side square with sum of squares of the other two sides 

 is z2 > x2 + y2 (follows the same relational logic as the angles). 
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  Case-2 Right angled triangle. 

 As in this case θ1 = 90º and θ2 + θ3 = 90º (sum of angles has to be 180º). ∴ θ1= θ2 + θ3. 

 The relationship of the larger side square with sum of squares of the other two sides 

 is z2 = x2 + y2 (follows the same relational logic as the angles). 

 Case-3 Acute angled triangle. 

 As in this case θ1 < 90º and θ2 + θ3 > 90º (sum of angles has to be 180º). ∴ θ1 < θ2 + θ3. 

 The relationship of the larger side square with sum of squares of the other two sides 

  is z2 < x2 + y2 (follows the same relational logic as the angles). 

8.3. The principle of true model of relational dominance or the genesis principle of trilinear 

relationships in natural number system. 

     The linear relationship x + y = z and the trilinear relationships, x2 + y2 < z2, x2 + y2 = z2 

and x2 + y2 > z2 (z ≥ y ≥ x, z < x + y), are the fundamental relationships of natural number 

system. As the natural number system follows the linearity axiom, x + y = z  is represented 

as two straight line segments x and y combined to form the straight line segment z, and the 

relations x2 + y2 > z2, x2 + y2 = z2  and x2 + y2 < z2 are represented by the acute angled ,the 

right angled and the obtuse angled triangles respectively, in which the numbers x,y,z  are 

represented by the corresponding line segments forming the linear and trilinear relations.  

        A new model, the triangle is formed from three line segments holding triangle 

inequality relationship, which has additional three parameters, the included angles 

between its sides. According to Euclid’s proposition 18 of Book 1 Elements it has been 

stated and proved that “In any triangle, the greater side subtends the greater angle,” and in 

proposition 19 of the same book it has been stated and proved that “In any triangle, the 

greater angle is subtended by the greater side.” From both the propositions it is clear that 

if a specific large side exists it would subtend a specific large angle and also if a specific 

large angle exists in a triangle there would be a specific larger side subtending it, which 

implies that the largeness of angles and sides of a triangle are mutually interconnected. And 

by lemma 7, it can be seen that in the three cases of triangles, the acute angled, the right 

angled and the obtuse angled triangles, according to the logic of relational dominance of 

the large angle over sum of the other two angles in turn represents the logic of relational 

dominance of the large side (square) over (the sum of squares of) the other two sides. 

Regarding dominance, conversely also it is true as there exists symmetry of logic for the 

relation between sides of a triangle in second degree to that of angles in all the three cases. 
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Since the dominance characteristic of the three triangle models (trilinear structures) is 

determined by the concord between logic of relational dominance of angles and sides, each 

of them can be called as true model of relational dominance of their corresponding trilinear 

relationships. 

          The property of the obtuse angled triangle and the right-angled triangle is that there 

is always a predominant large angle and therefore a predominant large side opposite to 

that. As demonstrated in lemma 7, in the case of acute angled triangle, even if there is a 

specific large angle, it is not relationally dominant as in the case of right angle or more, as 

the larger angle is less than 90º and is always less than the sum of other two angles in the 

triangle. It can also be understood from the fact that the relational logic of each of the angles 

(even if there is a specific large angle) with the sum of other two angles for all the three 

cases is same for an acute angled triangle contrary to the relation of the large angle with 

the sum of other two angles of obtuse angled and right-angled triangles. Therefore, the 

larger angle in the acute angled triangle model fails to assert sufficient dominance over the 

other two and correspondingly the largeness of the large side (even if it is specifically large) 

turns out to be dormant in the relation connecting the sides. 

                     

 

.              . 

     The acute angled triangle is a model that can have two large sides and correspondingly 

two large angles or all the three sides and angles same as in the case of equilateral triangle. 

The model manifests itself with its sides as a relatively good proportioned one, more often 

when it has all the sides different, such that the dominance of a single side is not sharply 

evident contrary to obtuse angled or right-angled triangles. Thus, the relational dominance 

of the large side over the other two sides in the three types of triangles is also reflected in 

          Obtuse angled triangle 

      Large angle Ѳ, 90° < Ѳ < 180° 

 Right angled triangle 

   Large angle Ѳ =90° 

    Acute angled triangle 

  Large angle Ѳ, 60°≤ Ѳ<90° 

  Large side  

predominant 

 

Large side  

 dominant 

Large side  

 dormant 
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the corresponding homogeneous second degree relations representing them. In the 

relations x2 + y2 = z2 and x2+ y2 < z2, one can easily identify the large side as z (z2 > y2, x2 

=> z > y, x). Therefore, the right angled triangle is the true model that represents a triangle 

inequality relationship in which the large side has its magnitude sufficient enough to imply 

its dominance over the other two  and an obtuse angled triangle represents the more than 

sufficient case of it. But the relations connecting each side of acute angled triangle with 

other two sides are all of the same form x2 + y2 > z2, where x and y interchange with z only 

in each case and as the relational logic remains same, the largeness of z (even if z > y, x) 

cannot be  explicitly or implicitly understood from the relations or remains dormant unless 

the sides or angles are measured and specified. Therefore, it is implied that for an acute 

angled triangle, none of its sides has sufficient magnitude to imply its dominance over the 

other two and it is a true model that represents the dormant relation of any of its sides with 

the other two sides. In general, the triangles classify into three classes according to the 

sufficiency of magnitude of the large side to imply its dominance over the other two.  

        The above said characteristic of the triangles forms the genesis of the trilinear relations 

in natural number system. The trilinear triples orient themselves as obtuse angled, right 

angled or acute angled triangles according to the relational dominance of the large number 

over the other two and the relation between the sides of the triangles in each case reflects 

the same. It is interesting to note that the four fundamental relationships in the natural 

number system x + y = z, x2 + y2 < z2, x2 + y2 = z2 and x2 + y2 > z2 can be demonstrated by 

the first six natural numbers i.e., 1,2,3,4,5,6, with all numbers different for each relation. 

                          1)     1 + 2   = 3   =>   x + y = z 

                          2)     22 + 32 < 42 => x2 + y2 < z2 

                          3)     32 + 42 = 52 => x2 + y2 = z2                z > y > x, z < x + y 

                          4)     42 + 52 > 62 => x2 + y2 > z2 

            The “principle of true model of relational dominance” or the “genesis principle” of 

the trilinear relationships in natural number system may be stated as, “The trilinear triples 

in natural number system classify in to three different classes according to the relational 

dominance of the large number over the other two numbers present in them based on the 

three types of triangles, the obtuse angled, right angled and acute angled triangles, as they 

are true models of relational dominance representing them, correspondingly represented 

by the homogeneous second degree relations between their sides.” It also shows that the 

natural number system which is otherwise well ordered is well structured too. 
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9. Fermat’s Last Theorem and its proof. 

Pierre de Fermat in 17th century stated that,” No cubes of natural numbers can be split  in 

to two cubes or a biquadrate can be split into two biquadrates or no other higher order 

number greater than 2 can be split in to the sum of two natural numbers having the same 

order. ” In modern terms the theorem can be stated as xn+yn = zn has no solutions for n >2.  

Proof. 

It can be seen xn + yn = zn  is homogeneous in n and we may assume that there exists 

solution for the relation for all n ≥ 2. 

       Let   xn  +  yn  =  zn            (1) 

           Then zn  >  xn, zn  > yn ∴ z > x,  z > y. The relation between y and x is insignificant to 

affect the proof any way. Let one of them be equal to or greater than the other. i.e. y ≥ x. 

          Now, xn+ yn  <  ( x + y)n ( by binomial theorem for corresponding n and n ≥ 2). 

   ∴ by (1)  zn  <  (x + y)n   i.e. z  <  (x + y)  

            This shows that the larger number z is less than the sum of other two numbers and the 

other two inequalities x < z + y, y < z + x, naturally follow and it is a sufficient condition to 

form a trilinear. Also the scaling property of the trilinear relationship in natural number 

system is held true by the equation xn + yn = zn, n ≥ 2, as it can be easily seen if x,y,z is a 

solution then mx, my, mz, m a natural number, holding trilinear inequality relation among 

them is also a solution. This leads to a class of triples satisfying the relation for any n. 

Therefore, xn + yn = zn represents an equality relation of trilinear inequality in disguise, for 

all n ≥ 2. This is a contradiction except for the case n=2. 

       There are infinite number of solutions for the relation x2 + y2 = z2 representing the 

fundamental trilinears in the natural number system. Natural numbers follow the linearity 

axiom and in turn follows the general theory of relationships of straight-line segments, the 

Euclidean geometry. All the trilinears in the natural number system are represented as 

triangles in Euclidean geometry and only be represented as an equality by the general law 

of triangles, the cosine law, which is a unique and invariant second order relationship 

between the three sides of the triangle and each of them belongs to one of the following 

classes, x2 + y2 = z2, x2 + y2 < z2, x2 + y2 > z2, z the large number, correspondingly 

represented by their true models of relational dominance, right angled, obtuse angled and  

the acute angled triangles, enunciated by Lemma 6 and the principle of true model of 

relational dominance of trilinear relationships  in natural number system . 



24 

 

       Now, let us analyse the case of raising the power of the triples of the three true modelled 

trilinear classes to higher orders and see whether they can be transformed to relations of 

the form xn + yn  = zn, n ≥ 3. It is proved above that the relation represents a trilinear 

inequality for n ≥ 2. And it is large number dominant for n ≥ 1( zn > yn, xn => z > y, x ). 

   Consider the case of  triples in acute angled triangle class holding the relation x2 + y2 > z2 

      The acute angled triangle model implies that none of its sides has sufficient magnitude 

to imply its dominance over the other two and it is the true model representation of the 

large number dormant trilinear relationships in natural number system. Though the 

relations of the form xn + yn  = zn, n ≥ 3, represent a trilinear inequality relationship, they 

also imply z > y, x, the dominance of the large number. Therefore, the transformation of 

any of the triples represented by the acute angled triangle model to any of these large 

number dominant trilinear relations turns out to be a clear contradiction and not possible, 

as the model demonstrates the relational dormancy of the large number, the relations 

imply the contrary. Moreover, this condition also contradicts the existence of the well-

structured (true modelled) trilinear classification (the principle of true model of relational 

dominance of trilinear relationships) in natural number system. In other words, raising the 

power of the numbers representing the sides of a triangle cannot alter the concord between 

the relational logic of angles and sides (as shown in lemma 7) that determines the relational 

dominance characteristic of the triangles (trilinear structures).  

Checking whether the trilinear relations x2 + y2 = z2 and x2 + y2 < z2 which are large 

number dominant represented by right angled and obtuse angled triangles respectively can 

hold the large number dominant trilinear relations of the form xn + yn  = zn, n ≥ 3. 

           Let as consider the case of  trilinear triples that belong to the class x2 + y2 = z2. It can 

be shown that they cannot hold a relation of the form xn + yn  = zn, n ≥ 3 as follows.  

                 Multiply both sides of the equation x2 + y2 =z2 with zk, k a natural number.  

          Then zk.x2 + zk.y2 = zk+2. As z > y, x => zk > yk, xk => zk.x2 + zk.y2 > xk.x2 + yk.y2 => 

zk+2 > x k+2 + y k+2.  As k = 1,2,3…. and let k+2 = n => n ≥ 3. Hence the relation x2 + y2 =z2 

can only shift to xn + yn < zn, n ≥ 3 when raised to powers above 2. Now the same argument 

can be applied to the trilinears holding the relation x2 + y2 < z2  and shown that they also 

can only shift to xn + yn < zn, n ≥ 3 when raised to powers above 2 and therefore cannot 

hold the relation of the form x3 + y3 =z3 or higher order.  

         Hence solutions for xn + yn  = zn, n > 2 do not exist and proved.   

 



25 

 

10. Illustration of the theorem with examples. 

         Let us demonstrate the above discussions, by considering the case of three triples, each 

from x2 + y2 < z2, x2 + y2 = z2, x2 + y2 > z2 and raise it to the power of three to see what way 

their relational logic shifts. 

                             22 + 32 < 42     => x2 + y2 < z2           23 + 33 < 43 

                             32 + 42 = 52    => x2 + y2 = z2        33 + 43 < 53 

                             52 + 62 > 72    => x2 + y2 > z2            53 + 63 < 73 

           It can be seen that all of them shifts to the same relational logic when they are raised 

to the power of three and hence, they cannot be associated with the trilinear structures. 

Here in the case of x2 + y2 > z2, when raised to higher powers above 2, it may not shift 

always to the form xn + yn < zn contrary to that of x2 + y2 < z2 and x2 + y2 = z2. For example, 

in the case of 7,8,9, 72 + 82 > 92, when the triple is raised to the power of 3, 73 + 83 > 93, 

holds the same relational logic, contrary to the case of 5,6,7. But they will never shift to the 

form xn + yn = zn, n ≥ 3, as it represents a trilinear relation that contradicts the logic of 

relational dominance of the trilinear structures. 

           Accordingly, the natural numbers holding the trilinear inequality relationship among 

them are no more a representation of trilinear inequality when they are raised above the 

power of two. 

11. Inference. 

        To summarise, the natural number system obeys the linearity axiom and there exists a 

transformation logic, the Euclidean geometry, that uniquely transforms the trilinear 

inequalities in natural number system to an equality as a second-degree relationship 

(cosine law), thereby also demonstrates that these inequalities do not get transformed into 

equality relationships of the form xn + yn = zn, n > 2, as it contradicts the principle of true 

model of relational dominance of trilinear relationships.  

          The natural number system, otherwise well ordered, is well structured too. It is not 

only the fundamental system for counting objects and combining their counts but also the 

fundamental system for measuring physical quantities and combining them to get resultant 

(the triangle law of addition of physical quantities). Euclidean geometry provides a 

theoretical frame work for the scheme and Fermat’s Last Theorem demonstrates the 

system is unique.   

 


